
SP-14 GREEN — Novel Chess Game
CS 4850 - SecƟon 02 – Fall 2024

November 15, 2024

MaƩhew Corvacchioli
Website Management

Joshua Peeples
Lead Developer

Ashton Miller

DocumentaƟon & Design

Dylan Luong

DocumentaƟon

Allen Smith

Team Leader & Development

UI

Designing an effecƟve user interface was our top priority for creaƟng effecƟve chess AI. Logically, we
started by creaƟng a representaƟon of a chessboard using primarily HTML, though JavaScript and CSS
were also used. A Module 2 funcƟon is used to place the chessboard with differently colored squares
onto the UI. Our UI implementaƟon has evolved significantly over the course of the project.

To start, our UI was rather barebones, consisƟng of a home screen with our group with an opƟon of
navigaƟng to a few other pages consisƟng of a rules page and a play screen. On the play screen, an acƟve
chessboard would be displayed with three buƩons to choose between tutorial, PVP, and PVAI. We would
end up scrapping the tutorial later.

The next iteraƟon of the UI introduced a more advanced layout, moving the page opƟon buƩons from
the previous version to a navigaƟon bar. The pages were now more visually appealing, and this version
was iniƟally light mode only. Throughout the semester, the idea of dark mode was discussed and would
later be implemented.

In this iteraƟon, the chessboard was redesigned, and the game mode buƩons were updated. The color
scheme was refined, with the board adopƟng a green Ɵnt and game mode buƩons turned blue. AŌer
finishing a game, a popup now replaces the individual Victory, Defeat, or Draw screens.

The third UI version is built on the previous design, with color updates and new features laying the
foundaƟon for the final version. The board's colors shiŌed from green and beige to purple and deep red,
and the game mode buƩons matched the board's purple for consistency. BuƩons also gained shadows,
with selected opƟons highlighted in deeper purple. A grey box at the top of the page idenƟfied each
game mode. The PvAI opƟon allowed users to choose an AI opponent (Randy Random) from a dropdown
and start the game. Popup for results replaced dedicated victory screens, and the dark mode checkbox
was added as a first step toward full dark mode support.

In the final UI iteraƟon, the home screen and the enƟre app were redesigned with a chessboard
background image. The dark mode was fully implemented, now applying across the enƟre app and
saving between pages. The play screen received the most updates: in dark mode, the board and
interface elements shiŌed to a red theme, with dark red squares, white and black pieces, and red
menus. The board also became rounded for a cleaner, more uniform design. In light mode, the previous
color scheme kept disƟnguishing the two themes.

FuncƟonality improvements included new AI opponents (Minimax AI and SmartyAI), a turn idenƟfier, a
resign feature for both PvP and PvAI modes, and a responsive design that allowed elements to resize
based on the window size, ensuring a consistent experience across different screen sizes.

Chess game engine-The Chess game is built using three different C# files called Piece.cs, Game.cs, and
Board.cs. Each of them has their own responsibiliƟes and must work together to allow everything to
funcƟon. Game.cs is responsible for keeping track of all the general rules of chess. It has variables that
keep track of who’s turn it is, if the game is over or not, and the current status (ongoing, checkmate,
stalemate). Game.cs is also responsible for checking for stalemate and checkmate aŌer every move and
handles most of the special case rules like En Passant and Pawn PromoƟon. Game.cs also has a method
that returns every valid move which is used a ton in the AI models discussed later. Board.cs iniƟalizes the
board as a 2d array and places each piece in the correct iniƟal posiƟon. AŌer iniƟalizaƟon it keeps track

of where each piece is currently located and has a few methods that help with some of the special case
moves and rules. Piece.cs defines a parent class that has a few variables to help determine which team
the piece belongs to and its posiƟon. Each piece type is defined as its own class that inherits from Piece
Each class defines movement logic and in the case of pawns there is a separate funcƟon to define
capture logic and an aƩribute to determine if the pawn is en Passant eligible. Rooks do not require
addiƟonal capture logic, but they have a similar aƩribute to determine if the rook is eligible for castling.

Pieces – rules

Pawn: The most basic piece in chess. Each player has 8 of them, and they all start at the second row from
the player’s perspecƟve. A Pawn can normally only move 1 square forward, but if it has not been moved
from its home row, it can instead opƟonally move 2 squares forward. A pawn threatens its forward
diagonal squares and can capture an enemy piece in these squares. Pawns cannot move backward, nor
can they move diagonally except to capture. Furthermore, Pawns can only move 2 squares if they
haven’t moved yet. A pawn that moves to squares and bypasses the threat range of an enemy pawn can
be captured by that pawn as if it moved only 1 square. See En Passant for more details.

Bishop: Bishops can move any number of unoccupied spaces in a diagonal. The bishop’s threat range is
the same as its movement range. Each Bishop starts on a colored square and can only move on that type
of square for the rest of the game. Bishops are strongest in openings for claiming the center board and
during the late game where most other Pieces have been captured.

Knight: Knights move in an L shape, going 2 spaces in a cardinal direcƟon and then 1 space in a direcƟon
that forms an L. Knights are the only piece that can move over other pieces, whether ally or enemy.
Knights threaten the squares that they end their move on. Knights are the only pieces other than pawns
that can be moved in the first 2 turns of the game. Knights are also the only piece that can threaten the
Queen while not being threatened back. Knights start between the Bishops and Rooks

Rook: Rooks are powerful pieces that can move any number of unoccupied spaces in the cardinal
direcƟons. Rooks threaten any space they can move too. Rooks start at the farthest corners of the board.
Rooks are powerful pieces whose main weakness is their lack of early game mobility, as it is a weak move
to move the pawns that block the Rooks early in the game. Rooks typically take mulƟple moves to get
into relevant play. Rooks are unique in that they can perform the Castle maneuver along with the King,
see Castling for more detail.

Queen: Queens are the most powerful pieces in chess. A Queen has the movement properƟes of a
Bishop and Rook but cannot combine their movement in one turn. The Queen threatens any square it
can move to, and with proper posiƟoning, can threaten any piece without retaliaƟon. The Queen is a
powerful piece that is not to be squandered, but it is sƟll ulƟmately expendable and is unlikely to survive
Ɵll the endgame during close games. Skilled players can offer up their queen in exchange for potenƟally
game winning momentum and board control. Queen trades are common occurrences. The Queen starts
adjacent to the King, on the square that is opposite their team color.

King: The King is the most important piece in chess. Like the Queen, the King can move in any direcƟon,
but unlike the Queen it can only move 1 space at a Ɵme. The king cannot move into any threatened
squares, and when the King is threatened no other moves can be taken unless it brings the King out of
threat (whether by moving the King, blocking the threat with another piece, or by capturing the
threatening piece). As a result of this, 2 kings cannot threaten each other directly. In tradiƟonal chess,
the King cannot be captured. Instead, if the King were able to be captured aŌer a turn of check, a
checkmate is declared. The King can be one of the most powerful pieces on the board come late game
where most of the minor and major pieces have been expended. Kings can perform the Castling
maneuver with a valid rook.

Castling: Castling is the only move that allows you to move more than one piece in one turn. If the king
has not moved yet, and the rook the king is trying castle with has not moved yet, the king can move 2
squares closer to the rook’s starƟng posiƟon and the rook will be moved to the other side of the king.
This maneuver is not available if any of the squares traversed by the king are under threat.

En Passant: En Passant is a special pawn capture in chess that occurs when a pawn moves forward two
squares as its first move and passes an adjacent opposing pawn. When this occurs, the opposing pawn
can capture the first pawn as if it only moved forward one square. This capture must be made on the
next move or the right to capture En Passant will be lost.

Stalemate: There are several forms of Stalemate. One of the most common occurs when one of the kings
is not directly under threat, and the player whose turn it currently is has no moves available. Threefold –
RepeƟƟon occurs when the same board state occurs three Ɵmes. If each side only has their king leŌ it is
also a stalemate due to insufficient material.

Checkmate: To win a game of chess you must put the opponent’s king in a posiƟon where it cannot
escape check in a single move resulƟng in a checkmate.

Modes of play

Player vs Player – For the player versus player mode, our group sought to provide a local experience for
two players of the game to interact on the same interface. This mode uƟlizes C#, HTML, and CSS to
provide structurally tact design and funcƟonality. A key feature that was developed throughout the
semester was the feature to show potenƟal moves that each user can make in their turns. Using a
combinaƟon of C# backend funcƟons and HTML frontend interacƟon opƟons, upon a selecƟon of a
piece, as the user begins to drag the piece the board displays the opƟons on each square that the user
can possibly move their piece.

Player vs Ai – Player vs AI funcƟons by using one interface and one class. IAIplayer defines that every
class that inherits from it must have a getNextMove FuncƟon. The class AIfactory keeps track of what AI
is in use and assigns it to a team. This sounds simple on paper, but it has made developing all of the
different AI models so much easier, because we just duplicate the simplest, change the decision-making
logic, and it is ready to test.

Algorithms

RandyRandom – The primary goal was to use a simple move selecƟon algorithm to ensure our
framework to set up the more advanced AI models was funcƟoning. To fit these criteria, we uƟlized the
random class built into C# to select each move. This gave us a nice baseline to work with and when we
want to make a more advanced model, we just duplicate RandyRandom and add decision making logic.

SmartyAI – This was our aƩempt at making our own AI model that does not follow a preexisƟng
algorithm. SmartyAI gets every valid move on the board, it then simulates every move, runs the move
through the evaluaƟon funcƟon and returns the move with what it deems to be the best outcome. The
evaluaƟon funcƟon considers a few factors when evaluaƟng a move. Firstly, each piece type has a
posiƟonal value for every square on the board. Secondly, each piece type has a weight that is only added
to the overall evaluaƟon value if a piece of that type is captured. Furthermore, if a piece is captured in a
move but doing so results in the piece that was moved being threatened the weight of the piece now
under threat is subtracted from the total evaluaƟon of the move. This allows the AI to consider trades so
if it can take the rook at the expense of its queen it will not make the move, but if it can take a queen at
the expense of a knight it will make that trade. Lastly, if there is a move available for the AI that results in
a checkmate it returns int.maxValue so that move is guaranteed to be the one that is selected.

Minimax – The MiniMax algorithm is a common AI model used in several two player games. Smarty AI
and MiniMax both assign each piece type a weight and posiƟonal value, but the one used in MiniMax is
a much higher scale allowing for weights to be more specific. Where MiniMax separates itself from
Smarty AI is it can look at a specified number of moves in advance that can be altered simply by changing
a variable. All our AI models are designed to always play as black because it would require a ton of
restructuring to allow the player to choose. When it is black’s turn the AI will choose the move that
maximizes its evaluaƟon score. When looking ahead the AI must predict the move that white will make
so it assumes white is playing opƟmally and goes down the path where white makes the move that
minimizes black’s odds to win. This algorithm is by far the most competent AI model of the three we
have developed, but because there are tons of moves being evaluated every turn runƟme can become a
concern, so the minimax algorithm has Alpha-Beta Pruning to help with this. This works by updaƟng the
values for a variable called alpha as the search is trying to maximize and update the value of beta as the
search tree is trying to minimize. If the value of beta ever exceeds the value of alpha, we break out of
that branch and avoid any further evaluaƟon because that move will not help the player.

How to set it up

1. On launch the program will send you to the Home page where you will see our names and a
navigaƟon bar with opƟons labeled: Home, Rules, and Play.

2. If you are unfamiliar with the rules of chess, click on the rules page to read up on them.
3. Once you feel comfortable with the rules, click on Play. You will be presented with an acƟve

chessboard. This page defaults to local PvP, so you can play against your friends.
4. If you want to play against an AI, click the PvAI buƩon on the right side of the board. This will

shiŌ the board to an inacƟve state and ask you to select an AI. New UI will appear on the right
side of the board that contains a dropdown menu to select the AI model you want to play
against. Click Start Game to begin playing against the AI.

5. If at any point you feel like you are going to lose and want to restart, there is a Resign buƩon on
the right side of the screen that will end the game.

